Plasma-Liquid Interactions: Status of Modeling Issues

Ahmed Hassanein Argonne National Laboratory

Presented at the ALPS Electronic Meeting May 4, 2001

Status of Plasma-Liquid Interactions

1. Effects of Plasma Instabilities

- -Modeling energy and particle transport in SOL
- -Splashing mechanisms
- -Shielding effects

2. Assessment of D-T/He Pumping & Removal

- -Self-consistent 2-D modeling of particle transport
- -Liquid enhanced He pumping

3. Enhanced Sputtering Effects in liquids

- -Proposed mechanisms
- -Model development

HEIGHTS Analysis of Total Erosion Thickness of Lithium Divertor during a Disruption

Helium Pumping by Liquid Metals

- Need He diffusion coefficient $< 10^{-4}$ cm²/s for reasonable liquid velocities. Recent studies indicate this may be the case.
- Helium penetration depth is only several monolayers!. NO Enhancement from internal flows!
- Need more data on He diffusion & trapping.
- D-T are completely pumped by flowing Li!
- Need to study synergistic effects in moving liquids?
- Bubbles formation → more likely WILL trap He!
- Bubbles bursting & Splashing → will de-trap He.

Sputtering of Liquid Metals

- Previous Russian data of He & D-T sputtering of liquid Ga clearly demonstrated that enhanced sputtering is due to bubble splashing.
- Enhanced sputtering erosion of liquids in US facilities (PISCES + U of I) indicates formation of bubbles and splashing! Makes the most sense.
- Need more data on He & D-T sputtering of Liquid Li → work done in PISCES & U of I is important. However, TIME DEPENDENT data is needed!
- Macroscopic sputtering due to bubbles bursting & Splashing → can be very serious issue of using liquid metals. Need to study macroscopic particles in SOL.